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A non-iterative variational technique for solviag the acoustic

field egquations is 2pplied o three differant boundary conditions, namelv
: J ’ E]

T

free surface, an edge and a surface with .ariodic discontinuiziszs, XA

¥

parturbacion approach to surface wave scattering by neriodic discontinuities

is also develop=d and used to obtain both the elastic avrd thae piaszoelectric
scatter matrix of a single electrode in a periodic array directly from the
naterial parameters of the substrate and the electrodes. This scatter
matrix accurately predicts the response of surface wave £iltars, transdu-

cers and reflactors.
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Chapter 1: 1Introduction

Over the past decade a new technology has emerged using surface
acoustic waves (SAW) for signal processing applications in the upper VHF
and UHF range. These applications include miniature bandpass filters,
resonators, convolvers, correlators and Fourier transformers [ 1 ]. The
chief advantage of acoustic waves over their electromagnetic counterparts
arises from the fact that acoustic velocities in solids are typically

-5 . . S g " . .
~ 10 times the wvelocity of light; the acoustic wavelength at 100 MHz is

about 30un comparad to the electromagnetic wavelength of 3 meters. A

[o%

significant miniaturization of signal processing components is thus achievad,
Surface waves have proved particularly useful in this context because their
energy is confined within a wavelength of the surface and is accessible all
along the propagation path. Moreover, unlike most guided waves, surface

waves ara non-dispersive.

Most signal processing devices employ surface waves in piezo-
electric anisotropic solids. Periodic arrays of electrodes are fabricated
on the surface to interact with the wave and produce the desired results.

An accurate dascription of these interactions is essential to proper £ilter
design. The main objective of this thesis is to develop, from basic fiz=ld
theory, simple models describing these interactions that can be used by

the device desizner.

The following chapters deal with a variety of interesting acoustic
field problems. Most of these results have already been published and the
purposz of this thesis is to provide a compact outline of the approaches
the tachniques and references to the litariactura

used, Detailed discussions of

are availadlao in the publications. A\ short tabulacion of the contenzs of 2ach

ald




9
chapter and the relevant publications are listed below:
Chapter Mo. Description Reference ]
2 A method for obtainingz the velocity and field 2 §
distributions of surface waves along the Icaez H
surface of a single or laminated anisotropic,
niezoelectric mediun,
3 A theoretical aad experimental study of non- 3,4,5,6
dispersive waves along an edge.
< N o - .
1Y 4 A method for calculating the apoproximate dis- 7,8
: persion curves for surface waves in a nmedium
! with periodic surface perturbatiouns.
5 A simple theory based on the concep:i of power 2
i3 exchange for describing the evolution of a
3 s . o1 =
(-3 propazating wave in the presence of sourcs
’ distribucions.
- 6 Derivation of the piezoelactric scattering 10
; matrix for surface waves from an slactrode
: in a periodic arrav.
¢ 7 Derivation of the mechanical 3cattering matrix 11,12
. for surface wavas Irom an electrode in a
periodic array. ;
. 3 A scatter matrix formulation for multistrip 13
b - couplers used to couple suriace waves IZrom
h one track to another. 3
9 Transducer structures for optimun coupling 14 o
to surface and line waves.
- |
‘ 19 Application of the principle of superposition 15,16,17,18 |
for simplified transducer design.
Chapters 2, 3 and 4 describe a non-iterative variational tachnigue :
for solving the acoustic field equations as applied to three differant
boundary conditions. The same basic technique is applied in Chapter 2 to ﬂ
1
1 - - i
describe waves confinad nmar a surface and in Chaptev 3 :o dascribe waves 3
bt
confined ncar an edge. Chanter 4 describes suriac2 waves in a medium with
periodic discontinuities at the surface. This tachnigue has bean used to
#
+

o




calculate the dispersion curves for surface waves in a periodic array of

electrodes. However, it is sometimes difficult to get a converged solution

using a reasonable number of terms in the expansion of the field quantities. 1

An alternative perturbation approach to the problem is described in the

remainder of the thesis. - 4
Chapter 5 describes a simple perturbation theory that is used in

the later chapters to characterize the interaction of surface waves with

g
[,

a periodic electrode array. This theory describes the generation of surface

-~

acoustic waves by sources such as charge and stress distributions. The

r.' “

. scattering problem is then treated as a process of generation by sources i
[54 . ;
a induced by the interaction of an unperturbed wave with the discontinuity. )
f

L . The effect of an electrode in a periodic array on a propagating %
4

i‘ acoustic wave is described conveniently in terms of a scatter matrix that !
x4 i

relates the outgoing acoustic waves and the current into the electrode to

the incoming acoustic waves and the electrode voltage (Fig. 6.2, Eq. 6.7). é

Chapters 6 and 7 evaluate the piezoelectric and the mechanical parts of
- the first two columns (Eq. 6.7) of the scatter matrix respectively, while

Chapters 9 and 10 involve the last column of the scatter matrix. Chapter 8

describes a scatter matrix formulation for multistrip couplers which are

-
e

widely used in surface wave devices as beam compressors and track changers.

The scatter matrix elements are deduced from the results of Chapter 5.

SEEPE S THAEY SRV
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Chapter 2: Surface Acoustic Waves

Surface acoustic waves 2ve non-dispersive waves a2long
surface of a solid and decay exponentially in the directlon normal to the
surface (Fig. 2.1). The velocity and field distributions for surlace waves
are usually obtained using an iterative procedure to sz2tisiy the boundary
conditions at the interface [19 ]. This procedura is rather complicated

2specially in layered structures [20 ] where boundary conditions have to

D2 satisfied at several interfacas.
This chapter describes a non-iterative techniqus Zor obtaininag
surface wave solutions ia anisotropic piazoolactric solids [ 2 ]. The

boundary conditions ara incorporated inuo the acoustlic £iald esquacions
using positicu-dependent material constants. This makes it pessiblea to
account for the boundary conditions directls without iZeration even ina
laminated media with several interfaces. To fiand the velocity and field
distributions typically requires the diagonalization of a 30x30 ratrix
which taikes only a few seconds on a computar.

The coordinate axes x x,, X, are chosen so that the wave
2

l’

-direction, decays in tne xz—direction and is unifom

propagzgates in the

x 1

in the x, -direction. The acoustic field is described by the particle

3
displacements in the three directions up, U, and Uy In piezoelectric
solids there is an accompanying electrostatic field described by the elec-

trostatic potential, 2. The stress, T and the electrical displacement, D

are related to the fi2ld quantities u and 2 by the constitutive relations:

zub N
T =C L, + e, {%— (2.1a)
ac achd Sy dac =y
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where C, e and € are the stifiness, piezoelectric and permittivity
tensors of the medium. The indices a, b, ¢, d take oa tha values 1, 2,

3 and sumwation over repeated subscripts i3 implied. The field =quations

are:

“Tac 2

S = -pu.: ua (2.28.)
c

3D
C

< -9 .

< (2.2b)
Cc

where 3 is the mass-density of the solid. The first egquation is obtained

[

by aguating the force on a differential element to its mass times its
acceleration and assuming an exp(jwxt) dependence for all field quantities.
The second a2quation is Laplace's equation from electrostatics.

Using the coanscitutive relations (2.1) to substitute for T and D
in the field equations (2.2) we obtain differential equations relating tha
field guantities u and 3. TFor a homogeneous wmadium the material constants
C, e and < are coastants so that the differential equations have constant

laminated medium, the usual procedurs is to solve

coefficients. 1In a
these esquations separately for each of the layars and then look for the
correct wavenumber at which the nomal stresses and electrical displacemen:
are contiauous at the interfaces. For a semi-infinite solid this involves
making the normal stresses zero at the surizce.

In the present approach the material coastants are written as
it

functions of x, so as to describe the composites mediwa. For a semi-infi-

E(XZ) =, 9(32) (2.3a)




where F denotes any of the material constants g, C, e or € of the sub-
strate, F is its position-dependent value, e(xz) being the unit step

function., For a layered medium we write,
F(xz) =F 9(x2-h) + F [6(x2) - e(xz-h)] (2.3b)

where F is the material constant of the substrate while F* is that of

the layer on top, of thickness h.

Using this method, we have a single differential equation with

k

- 3

¢
‘-i- variable coefficients for the composite medium. The field equations in-
§ volve derivatives of the material constants giving rise to delta functions

at the interfaces that take care of the boundary conditions automatically
- < (211,

To solve this composite differential equation, the field
quantities u, and ¢ are expanded in a series of orthogonal functions. We
know that the excitations are wavelike along X and decay essentially ex—.
ponentially along Xye In view of this, the field quantities are expanded
in a series of Laguerre functions in x,. The Laguerre functions form a

2

complete orthonormal set over (0,®) and are defined as,

RS

3 (@) = exp(- . B_()/m! (2.4)

where Pm is the mth Laguerre polynomial. The presence of the exponen-

tial term is particularly convenient for the decaying field distributions
we are seeking to describe. It is found that five terms in the expansion
provide an adequate description of the field., 1In the propagation direction
the fields are assumed wavelike with a exp(—jkxl) dependence, k being the

wavenumber.



arential equation is converted

Using
to an algebraic wmatrix aguation. The matrix elaments are determined from
integrals iavolviag the posicion-dependent mazerial coastants. The un-

he various field gquantities.

Tt

pansion coeilicizats of

4 1 3 O 1 . I3 . ., = -
The lowast elgenvalue of the macrix vields the velocity of thiz suriace
. wave andé tha corrvesponding eigenvector zives the field distridbutions.
This technijue has bewen asolied to obrain surface wave solutions
‘e . BTN . .
[ o for various orizncations of lithium niobata (LiNbJD,); disnersion curves

have been computad Zor practical layered structuras such as silicon

dioxide on lithium tantalica aad gold on LiXHO,. Fig. 2.2 shows tha

surface wave velocliy azainst ¥h whare k is the wavenumber and h is the

w

thickness of the goid layer. This is in agreszment with results reported

The details have been dascribed
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Chapter 3: Line Acoustic Waves
The guiding of surrace acoustic waves along a free surface involves
only one boundary in contrast tov most waveguidiag structures which require

two boundaries. This makes suriace waves non-disparsive since the guiding

dimension.

¢}

structure has no characteristi

The guiding action of the surface is explained qualitatively in
this way. The particlas near the surface have greater freedon of movement
than those witnin the bulk of the solid. This maxes the surfacs apnear
less "stiff' than the bulk so that the wavefront moves s
surface, Since waves in general tend to be zuided along regions of lower
velocity the surfzce acts as a guide,

This view of surface gulding leads us to aupect that there wil

™

be a furthar lowering of wave velocity near an edg: Sormed by two stress-

free surfac=s. These waves, called line acoustic waves, are non~-dispersive
ton since an =dge has no characteristic dimensicns. 1In addition line

acoustic waves are di

1

within a square wavelength from the edge,

i er

The theoretical analysis of suriace waves described in chup

T

2 is re=adily extended to line waves by using a double seriss of Laguerre
functions to expand the decaying field distributions aloag both %, and 4
{3 1. Using this analysis the field distribution for a z-propagating line
wave in lithium niobate was calculatad. A computer plot is shown in Fig.
3.1. Tt is seen that the wave motioa is flexural. The particie morion

is antisymmetric about a central plane; when the horizontal fuce woves

into the solid, the veruical face moves cut of the solid thus making

room for each other. As may be expected, this is tha mode with the

I
(
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lowest velocity; symmetric mod=s whare

synchronism have higher velocities and

Line waves are chavactarized
fraction and nondispersive propagation
processing applications. Howaver, Ior

nead edges that do not have imperfectio

<<

wavelangth; in the UHF range this mean

edge should beg smal

For our euperiments we used a wedgze with an interior anglia of

(@)

84.9° obtained by cleaviag 127.8

the cleavaze plane is crystallo

wedg2 Ls known vory acouratelv, The theoreticallv calculazed particle

displacemencs and

7,

Line waves at 40 Mz were excited using 2n interdizica

1

ducer with 45 elactrode pairs and a unirform overlap of 1k, The

shear narvticle displacament was meisurad 2lonz the top surface o

L . . . - .
th top polished surfaces {4 ], The b

Fig, 3.4 for a 100 mi line wive along this wedge,

the two faces move in aad out in
in most cases are not guided modes.

by high pow:ur densizy, zero dli-

ns any larger than a fraction of a

t

thac chips and striations at the

w
s
Q
o}
1
.
ye
u
U
[}
"
[
»
<
(8

suitabla for lossles

t 220 MHz (& =~ lbum) by cleavi

ng the x-axis at an angle of 57.24°
i
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The measured line wave velocity was 3500 m/sec. (+ 1%), which compares well
with the theoretical value of 3488 m/sec.

A 220 MHz line wave device [5 ] was built using single phase
transducers (Fig. 3.6). These transducers have electrodes A/2 wide as com-
pared to the A\/8 wide electrodes required for reflection-free interdigital
transducers. This reduces the resolution requirements by a factor of 4 so
that higher frequency devices are fabricatgd with the same photolithographic
capability. Fig. 3.7 shows the frequency response of the device which has
the ideal (Sinx/x)2 shape anticipated for a non-dispersive delay line with
unweighted transducers. No significant losses could be detected along a
1 cm. propagation path.

One of the drawbacks of the single phase transducer is its
poorer coupling compared to the interdigital transducer. A sawtooth trans-
ducer (Fig. 3.8) combining some of the features of the interdigital and the
single phase transducer, provides better coupling [6 ]. A discussion of
the coupling efficiency of various types of transducers is contained in

chapter 9.
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Chapter 4: SAW in Periodic Laminated Media

In chapter 2 an analysis of surface waves in laminated media was
described using an orthonormal series of Laguerre functions to express field
distributions in the direction perpendicular to the surface. However, the
medium was assumed uniform in the propagation direction X;, SO that the field
quantities were wavelike in X with a single Fourier component exp(-jkxl).
We have extended this technique to include periodic variations of the material
constants in the propagation direction (Fig. 4.1) by using Fourier series to

express field distributions as required by Floquet's theorem:

. 27
£(x1,%,) -mZ’In Eon Bn(%y) expl-j(k+n . -;—) xl] (4.1)
where qm(xz) is the Laguerre function

p = length of one period

and fmn are the expansion coefficients for the field quantity f.

As before, using position-dependent material constants to describe rhe
composite media we can take care of the complex boundary conditions in this
problem. The differential equations are then converted to matrix equations
and the phase velocity for a given wavenumber is obtained from the lowest
matrix eigenvalue [ 7],

The chief difficulty of this method lies in the fact that many
practical problems require a large number of Fourier terms for an accurate
description of the fields. This makes the size of the final matrix un-
wieldy for the numerical computation of eigenvalues. Perhaps a different

basis set for expressing field distributions in the propagation direction

would be more appropriate. However, this has not been investigated.
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The technique was applied to various practical structures with

considerable success. Fig. 4.2 shows the velocity for different wave-

numbers, k, obtained for a grating of thin electrodes on Y-Z LiNbO3. The

wavenumber is normalized to B°(= 2n/p) where p is the grating period. At

k = .SBO there is a stopband as anticipated. The velocity is discontinous
at this point. The potential and charge distributions along the surface
are shown in Fig. 4.3 corresponding to the two values of velocity. The
flat potential regions correspond to the regions covered by electrodes.
Between the electrodes the charge is expected to be zero. As can be seen
from the figures, this boundary condition is only approximately satisfied.
This is because only a finite number of Fourier terms is used. The present
analysis is thus a variational analysis that minimizes the velocity eigen-
value for an assumed expansion of field quantities in orthogonal functions.
The method has also been applied to grooved arrays and thick
electrodes. These results are described in [8 ]. This technique provides
a generally applicable scheme for calculating approximate dispersion rela-

tions for laminated piezoelectric structures with periodic boundaries.
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Chapraer Z: A Simple Perturbation Theory for Prupagacing Waves

A commonly occurring problem in wave theory is to describe the
changing characteristics of a propagating wave due to a distribution of
sources ia the medium. This source distribution may be due to external
generators, as in tcansducers; or it may be induced by the incident wave
due teo a change in the mate%ial properties, as in reflectors. 1In most
practical cases the perturbation of the wave is small over a wavelength,
and no essential change takes place in the relationship between the di
farent field components comprising the moda, Under these conditions ewvan
a complicated coupled mode like a Rayleizh wave is dascribed by a single
complex amplitide, A. An unperturbaed wave travelling in the z-direction
has a constant amplitude A; in the presence of sources the wave is per-

turbed and A is a slowly varying function of z described by a simple

L ,

differential equarion {Fig. 3.1):
1 3

rr

[o8
o

dA _ dp (5.1)

z 2 dz

rd

LY .

a
where (1) dP is the powear (active and/or reactive) flewing Zrom the sourca
1

into the wave in a distance dz along the propagation nath.

the propagating wave.

~—~
N~
N~

n

Pa is the time-averaged power flow o

and
This equation follows quite =2asily for real dP frem the relation
?aﬂf{Alz and the conservation of power. For imaginary {or reactiwve) dP
the relation is not so obvious but can be proved by considering the instan-
faneous (rathar than time-averagad) power £low.

fEquatinn (5.%) is simple in appearance but is remarkabiy
in solving the trpe of perturbation problems we have bean discussing.
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media, as we propose to show with the following examples. he resulcs

nresented here 2re noc new, but they are z1l derivaed from the siame =z2quation

(5.1), thus providing a simple unified physical picture for a wide variaty

1

orward to ex-

ht

ry

makes it straig

(&)

of wave perturbation phenomena. Thi
tend the results to new problems involvinz waves with more complicated
fialds.
1. A classical traansmission line:

We start with 2 trivial example for which axact solutions are
available from well-known conventional techaiques and show how Zz.

(5.1) predicts the same results. We consider a transmission line moda

as a distributed circuit with a series impedance, Z and a shunt admic-

tance, Y. The charactaristic impedancs, zo and tha propagation constant,

Yy are reilatad o Z and Y by,

Q
= | — { 2
Zo =Ny (5.2a)
v.o=\2ZY¥ (5.2b)
[e]

1

Now if wa change the shunt admittance by an amount AY, the propagation

constant will chanze from Yo to Yo; Av.

v+ Ay = 2 + )

Iy

N4
~ =5y iE A
Y, (1 + ZY) 1f AY <Y

so that,

Av =

(5.3
orovidad Y is much less than ¥, that is, if the perturbation is small,
Now we derive & using Z7. J5.1). The additional admittance

AY causes a shunt curcent, T per unit length given by
s

i.




I =V . Ay
s

where V is the potential of an unperturbed wave. This shunt current Is
may be considered an induced '"source'" and the power flow into the wave

from this source in a distance dz is written 2s,

1 %
dP = - =V I dz
2 s
2
= - lVEL Ay dz (5.4)

Using dP from (5.4) in (5.1),

2
l%:-—lﬂ_'AY
A dz 4P
ZO
- -5 (5.5)

Integrating (5.5), we have,
A(z) = A  exp(-Ayz) (5.6)

where, Ao is a constant

Z

and, - 7° . Y (5.7)

The results in Eqs. (5.3) and (5.7) are seen to be equivalent, noting
from Eq. (5.2) that ZOY = Yo. The amplitude A used here can be any
of the field quantities (voltage or current) with the unperturbed phase
factor exp(-Yoz) removed.
2. Plane bulk acoustic waves in a conducting medium:

We now go on to a more complicated example. Let us consider a
plane bulk acoustic wave propagating in an insulating solid with a piezo-
electrically stiffened velocity V- The wave is accompanied by a traveling

electrical potential 2, We wish to find the attenuation and the change in

velocity of this wave if the solid has a finite conductivity ¢ and a dc field




is impressed t. “rilt the carriers in the propagation directiou.
solutions for this situation are available [23] and once again we ca2n

compare our resulcs from Eq. (5.1) with well-known results.

In a conduccing medium the piszoelactric potential =

the acoustic wave causas the charges to bunch, forming a travelin

charge discribution 3. This charge distribution produces an electrostatic

potential, 2 : i5 obtained from Poisson's equatio

the unpercurde
cercurbati
and the perturbed wavenumwbdar
coasidering plane waves,

trneg current p2r uni:s

tribution. This current is considered Zrom which

wave absorbs unit area given by,

acoustic wave velocity,




®* (jwe)
dA _ Ta
& - i (5.12)

4Pa

>l

whera Pa is the power flow per unit area of the acoustic wave. 1In this

example the wave in the insulating solid was assumed the unperturbed mode.

The acoustic wave thus has no associated charge Pav However, in general

)
we should add a term (ija)c ¢e to the numerator in (5.12).

We now need the charge distribution p in terms of ¢, to complete

the analysis. This is readily done by writing J from the material constants

and using Eq. (5.10b).

J=v,p=]330(¢, + ¢) + vyp + 8. Dp (5.13)

where, (1) o is the conductivity of the medium

(2) D is the diffusion constant of the carriers
(3 vy is the drift velocity of the carriers in the propagation
direction due to an external dc field.

Here we have written only the linear component of current having

exp(-j3 z) dependence. The non-linear acoustoelectric component involving
o

the product of # and p is neglected. Using Eq. (5.8), we obtain i

from (5.13), 2 5
"S 0'¢ k]

jop = === (5.14) é

J € W i

Y'J<%; + E§> §

4

where, y = 1- Vd/va (drift parameter) (5.15a) | 3
w = o/€ (conductivity relaxation frequency) (5.15b) E

1

w = vi/D (diffusion frequency) (5.15¢) _

Using (5.14) in (5.12),

* 2

1da . %% P
[od
w

A dz 4p w
a . [}
v-{ =+ =)
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so that, A = Ao exp{-(a + jl&3)z]
where %
o A3 ¢aea Eoc (3.15)
=— ‘vt iz = 1
W
Bo So +Pa )

{ c W
-l —
Y-\ w

Here ¢ is the attenuation constant and A3 is the change in the wavenumber.
Now, for a periectly conducting medium with no drifc field, we can obtain

the change in wavenumber Aasc from (5.16):

A3 b3,
SSC = ___._.2Pa . 3 :_UE (5.17\J
“o a ©
Usinz (5.17) in (5.15),
w /Yy
@5 83 Sse '’ (5.13)
= T ruhs Py 5. 5 (D )
o 30 ?o 19 LW
L-— =3
¥ “e'd

This is seen to be the same rasult as in [23] noting cthaz A3 /3 is equal

to half the electromechanical coupling constanc.

T

3. Surface acoustic waves in the presence oI distributed sources:
Now we come to an example for which no exact solutions are
available, namely the propagation of a surface wave in th
stress and charge distributions ou the surface and distributed volume
1-

forces and charges within the buik.

Consider an unperturbed surface wave propagating with a velocity

P

cg along the surface of a semi-infinite substrate with a perfect open
circuit (% = 0) above, The propagation is in the z-direction and the wave
is assumad unifowm in the x-direction. Yow if we assume stress Jistribu-

(z) (1L = x,v,z) and an electrical displacement O {z) on the suriace

’
-

tions T
i

(y = 0) then the power d?s flowing into the surface wav

©

J
D
"t
I
o
n
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width in a distance dz is given by,
= * _]_‘_ i Z * - ’ 7’(/ _ . ’:]
dp_ = 4. 7 dz L. v; (7=0) T/ +g(y=0) jub (5.19)
1=X,¥,2
where A is the amplitude of the surface wave and vi(y=0), ¢(y=0) repre-

sent the particle velocity and electrical potential at the surface of a

unit amplitude unperturbed surface wave. The signs of the terms in (5.19)

correspond to the y-direction being into the surface.
If there is a body force density F’~ and a charge density p’~

within the volume then there is an additional power flow de into the

surface wave given by,

@

% 1 r r * <, -
dP_ = A, -dz | d Lz . P (5.20)
v 2 JO y L]_:x’y’z vi Fi + ¢ (pr )_!
The total power flow into the wave is,
dP = dPS + dPV (5.21)
Now, from Eq. (5.1) we have,
1 dA 1 dp
—_— 22 . - I (5.22a)
A dz 21A12Pn dz

where Pn is the power carried by a unit amplitude surface wave, so that

the power in a surface wave of amplitude A is given by

_ 2
B = lal P . (5.22b)

Using (5.19), (5.20) and (5.21) in (5.22a),

da _
4 Pn iz fs + fV (5.23)
where,
£ = T v* -0y T’ 3 0y iwd’
s = TiZx,y,z 1070 Ty, + 2 (y=0) judg (5.24a)
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Chapter 6: Piezéelectric Scatter Matrix for Thin Conductive Gratings

Periodic arrays of thin metallic electrodes are widely used in
surface wave devices for constructing transducers and reflectors. In
reflectors the electrodes are either left.unconnected or shorted together
to form a periodiec grating so that the structure is truly periodic. In
transducers, however, the electrodes are connected to external voltage
sources and the particular sequence and phasing of electrode voltages
depends on the desired spectral response [27]. This makes the structure
electrically non-periodic. The analysis to be described in this chapter
assumes electrical periodicity and is directly applicable to reflectors
and multistrip couplers. A modification is required in its application
to transducers which is presently being developed [28].

The array of electrodes at the surface perturbs the boundary
conditions so that both stress and charge distributions are induced at

the surface. The basic problem is to determine these induced source dis-

tributions due to an incident surface wave; the perturbation theory developed

in the last chapter (Eq. 5.23) is then used to determine the phase change
of the incident wave and the generated reflected wave. The assumption,
of course, is that the perturbation is small over a wavelength which
is true in almost all useful applications.

In this chapter we will consider only piezoelectric scattering
due to the induced charge distribution; the mechanical scattering due to
the induced stress distribution is discussed separately in the next chapter.

In strong piezoelectric materials like LiNbO3 the scattering from thin

electrodes is predominantly due to induced charges; but in weak piezoelec-

tric materials like quartz the mechanical scattering is more important,

ama e e L e
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We consider au ifncident surface wave fLrom the left on a periodic

array of electrodes eich of which is connected to zround through an iipad-

—

ance 2 (Fig. 6.1). The elec-rical potential at the surface associated
\ S 4

t

with the wave 13 taken aus 2 medsure Of its amplitude,

) -j3 z PR
.= 2@ 13 (5.1

whevre 50 is the unperturbed wiavenumber. :+ i3 the amplitude (complex) of

N

the wave entering an eclectrode Zrom the left., The wave leaving
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5.23 over on=2 period
ES 2
Lo RN -
A3+ =5 Dy(z) e (5.2a)
-p/2
7 +p/2 .
by = 7? . Dy(z) e-JSoZ (5.2b)
-p/2
L
here Z = #+Q+
wnere, a ZPa

Pa being the power carriad by a surfacs acoustic wave with a suriace

potential of 2 .

(o %

To determine Dy(z), we assume that an electrostatic fiald describe
by Poisson's equation is superposed on the piezoelectric field. The porantial
4 due to this field is written in a Fourier series {rom Floquet's theorem

(=)

for periodic media:

= (n) (n)
n ~(n
“ _ ~13 ! -j@ z .
2. (¥,2) = él_m % © | Ve (6.3%
where, S(n) =3 + n.EII
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The exponential decay along y follows from Laplace's eguation for charge-

free media.

The total elazctrical potential at the surface is given by,

2(z) = P e_JBOZ + ae(y =0, 2) (6.4)

T+
The tangential electric Zi=2ld at the surface is obtained from the deriva-

tive of the potential:

-i3 2 ';‘ (n) -j5(n)z
E (z) = j3 2 o b3 3 e °F (6.5a)
z o+ o n
The elactrostatic part of the field gives rise to a normal electric dis-
placement Dy(z) at tha surface that is written from Laplace's equation:
=
- .o (0)
N () -3 P
D (z) = (5+ £y o 13, otF (5.5b)
v o o’ L n
n= -

whera £ is the effactive permittivity of the substrate and Eo is the
permittivicy of the medium above the surface. The problem now is to

detarmine the Qn’s such that (Fig. 6.1)

E_(2) =0 lz| <% (6.6a)
D (2) = 0 %< 'z} < p/2 (6.6h)

This is done analytically in [19] using the propertiaes of the Legandre
polynomial. Once the induced charzes in the scrips Dyfz\ is deternined

A9 and A3 are readily obtained from Z3. (5.2). A (3x3) matrix
+ -~

relating the fields at the two acoustic and on2 2luctrical ports (Fig.
6.2) 1s obtained analytically:
- ] /' N
3+ A@_\ A A, iy [ }
2+ 4z - A A A Y K (5.7
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Fig. 8.2 is labeled in terms of dimensiorless coordinates s 4nd 2 in

place of 30 and z. In the above discussioa we assumed a wavz, 2 iacident

da

4

from the leit. The second column of the A-matrix corresponding tc a wava,

2 incident from the right is obtained by symmetry.

The (2x2) scatter matrix, 3, relatingz the two acouszic ports is

easily obtained from the A-matrix by setting I = V/Z where 2 is the ex-

ternal load at each strip. TUnconnected strions are described by 2 = =
while shorted strips are described by 7z = 0,

Thus a completa scatter matrix describding zhe pizzoelectric

scattering by a periodic array of electrodes is obtainad analytically
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Chapter 7: Mechanical Scattering from Periodic Arrays
In this chapter we consider the scattering due to a thin strip
overlay of height h (<< wavelength) on the surface (Fig. 7.la). An

incident Rayleigh wave along a free surface induces normal and tangential

]
yy’
the surface. The basic problem is to determine these stresses in terms

stresses T;y’ T T:y (Fig. 7.1b) at the interface between the strip and
of the particle velocities of the incident wave; the stresses can then be
used in the perturbation Eq. (5.23) to yield the phase shift of the
incident wave and the reflected wave.

To a first approximation, we may assume that the strip floats
on the wave so that the entire strip moves with the same particle
velocities as the unperturbed surface. In this case the problem amounts
to finding the forces that have to be exerted to the strip by the inter-
face in order to move it with the same particle velocities Vs Vy’ v, as
the unperturbed surface. This is done by considering the forces acting

on a differential element dxdz of the strip of height h. From the x-

directed forces (Fig. 7.2a),

,

) aTXZ
Txy = jwp'h Ve~ h. = (7.1a)
From the y-directed forces (Fig. 7.2b),
3T,
° = jup’h v - h . —L=Z (7.1b)
yy y oz
From the z-directed forces (Fig. 7.2c¢),
™ = jws’hv. -h e (7.1¢)
zy ‘ 4 * dz ¢

where ¢  is the mass-density of the strip.
Eqs. (7.1) give the interface stresses in terms of the

surface wave particle velocity provided we can express T;z, T;z and T;z in
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Figure 7.2: First order forces acting on a differential
element of the strip in
(a) =x-direction
(b) y-ditection
(c) z-direction
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terms of Vs Voo V- This is done approximately from the plane strain
equations to yield [30],

7’ 1,
T = - —-— U v (7.2a)
Xz C X .
8
T L 4u' G+ u)) (7.2b)
zz C i’ : .
s A+ 2u
T =0 7.2¢
. (7.2¢)
/, d
whera CS is the surface wave velocitcy and > , 4 are the Lame coastants

of the strip material. For anisotropic s:irins, similar =2quations are
derived but arz more complicatead,

So far we have not considerad the aiffect of the Zinite strip
width. At the adges of the strip (z = = a/2) the situation changes some-
what from that depicted in the force diagrams of Fig. 7.2, There is no
strip material on one side to exer:t the stresses T, T’z and I;Z on the
z~- face of the strip. 30 in order to xeep the strip vibrating with the

same particle velocities, the substrate has to exert extra forces at

I
Hy
rr
")
rr
N
i
i
o
e
ro

the edges to make up for the missing material to the 1
and to the rizht at z = + a/2,

The interiace stresses thus have the spatial distribution

shown in Fiz. 7.3. The stresses are unilorm under the strip with delta

< . .. ' . R AAG S RPN

functions at the two edges. In the figure aA = and ¥ = P .
: z A+ 20

ion coetfficients

T

Using thes2 stress distributicns the reflec
pradiczad for several practical cases agree well with measured values. The

details are dascribad in [11]. 1t is found, however, that this does not

hase velocity from the unperturbed wvalue
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that is exporimoancally observed. The physical reason for this velocity
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Spatial distribution of

(a) x-directed interface stresses
(b) y-directed interface stresses
(¢) z-directed interface stresses
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lovering is thut, dus to the interface stresses, the subscrate is cdistorted

somewh2t, and the assumption of the strips floating on the wave made here
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his distortion represents 2

a lowaring in velocity. Methematically, this is taken
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system causin
into account by assuming the excitation or evanescent modes that store

enerzy.
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The first-order stress shown in Fiz. 7.3 induces particle 4i

placements with spacial

from the unpercurbed wave-
aumber 3 by an intezer multiole of 2T/ whera o is the period (Floquet's

Theorem) of the array. Thesa fialds store enerzy and their effect on

the incident wave velocicy is obtained fvom (3.23) using the second-order

w
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enerated by the induced particle displaceme=nt Iiald. A complete

analysis of this stored energy

velocity 2and reflaction are corractly aredicted using this analysis.

The analysis described in this chapter yields the mecranical
part of the scatter matrix oi an electrode in a periodic array. These

AL, A A obtained in chapter 5 (Egq. 6.7) Ior
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Chapter 8: Multistrip Couplers

A multistrip coupler (MSC) is a periodic array of electrodes
that is used to couple from one surface wave track to another (Fig. 8.1).
Each strip of the MSC samples the potential of the incoming acoustic wave
and applies it to all the tracks generating acoustic waves in each track.
Because of the traveling wave nature of the excitation, the generated waves
are unidirectional; reverse waves may be ignored outside the stopbands.
MSC's are widely used in surface wave technology as track-changers, beam
compressors and couplers.

In this chapter we will derive the (MxM) scatter matrix of a

single strip in a MSC that relates the incoming and outgoing acoustic waves

in the M tracks (Fig. 8.2)
“
n n _n
= b i =
A7 kél o Bp ,i=1, M (8.1)

n . . . . th h

where Bk is the incoming wave amplitude in the k track at the nt strip

n ., . . . .th th .
and Ai is the outgoing wave amplitude in the i track at the n strip.
We wish to determine bik' The superscript n denoting strip number is
dropped for convenience. The scatter matrix of successive strips can
then be cascaded to obtain the scattering characteristics of the coupler
as a whole.

Neglecting backward waves, we may write in terms of the A-

matrix in chapter 6,

o
[}

A s, Al g 6.23)

=2 g 4 Ay (8.2b)

i 31 i 33
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. . . th .. -
whera [, is the current into the 1 track, V is the common voltage of
i

-

i , . . th .
all the tracks, and Aém) represents the A-matvix elements of the i track.,

If a load YL is connected externally to each strip then,

Pz
Z I, + VY, =0 (8.3)

M M
AN D) LN (1), _
oA B v s oA 0
i=1 i1=1
M
So that, YV = - A(l) B, (8.4a)
- 31 i .
Y
M
where R A Z, Agg) (8.4b)
i=1
Using {3.4a) in (3.2a),
M
(i) (1) N (k) ..
A T A1 By Ty AgyT By (8.3)
~ K=1

Comparing with (3.1) w= have the scatter matrix b‘k:
i

ENGY 1y (k) -
i T ML B T A530 A (8.5)
v
where 5=1 i=k B
§ =0 i # k.

The first term in {8.5) denotes the direct propagation while the second
term denotes coupling from other tracks. An incident wave iu track k |
(k)

produces a currant proportional to .-\31 . The strip voltage is relatal to

the current by the total stripadmittance¥. Thestripvoltaze is thenovoportional

(%) . . . . . i (x
to Aél /Y which gensrates awave in track i proporticnal COA,()‘;) :\3‘I) .
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A simple circuit model for the scatter matrix is described in [ 13].

The scatter matrix method is applicable to the analysis of non-uniform
couplers with slowly varying characteristics; such couplers are not amen-
able to analysis by conventional techniques. Details of this technique

with examples are described in Reference [13].

s R
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Chapter 9: A Unified Theory of Transducers

In the last thrze chapters we have discussed the scatter macgrix
for a single stvip in a periodic array. As mentioned earlier, this fornu-
lation is directly applicable to reflectors and multistrip couplers; but

. modifications are necessary to apply it to transduczrs which are usually

g T ————

not electrically periodic. A complete scatter matrix description for
transducers is presently being developed [28].

it .

The scatter matrix approach to transducers, though accurate,

' bas

&
*
i
‘e
*
i' requires numerical implementation thus leading little physical insight.
s A less accurate approach known as the 'weak coupling approximation’
o

the advantaze of yielding simple results that are easily interpreted
physicaily. The acoustic waves zanerataed by the transducer induce charges

ian the electrodes which in turn regenerate acoustic waves. This regene-

ration is neglected in the weak-coupling approximation. With this approx- r

imation, the charge distribution in the array is calculated from eleczro-

statics alone. The problem then dividas into two steps:

&

o
k)

(1) The charge distributivn on the electrodes is datermined from
the electrostacic equation.
.. (2) The calculated charge distribution is used in Zz. (3.23)
to determine the generatad acoustic waves.
This chapter describes the second step in terms of an aribtrary charge dis-
tribution. The next chapter discusses the first step for SAW interdigzital
transducars.

In this chapter we will discuss the radiation conductance, capa-

citance and Q of the generalized transducer depictad ia Fiz. 9.1. These

results are universal aad can be appliied to the excitation of any acoustic

[ ]
FOS

mode (SAW or LAW); certain unifying [eaturas common to all transducers are
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Figure 9.1: A generalized transducer producing a potential
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proportional to the terminal voltage V




»

- I A

.,-w‘»:., o ‘

g e o

wn
~

revealed through this general formulation. An external generator imprasses
an alternating voltage V at a frequency @ across the terminals of the trans-

ducer which is an interconnected pattern oi elactrodes that produces u

' . . . . . . , A . .
potential distribution on the surface given by V¢ (y,z). The function

T, . o - . . .
3 (y,z) is characteristic of the transducer and has to be determined £rom

the electrostatic equations as discussed =arlier. <Corresvonding to this

potential dis tribution we have a charge distribution per unit area in the

o~
transducer V;L(y,z). The peak electrostatic energy, W, stored in the
transducer is given by,
T V2 T, T
Ty T
W= {(z71e7) (9.1a)
Ty T, pa T* T . .
1o = "Tdydz 3 (y,2) 5 (y,2) (9.1b)

over the
transducer

where {2

-~ hb'j Py k ., ’ . - - . a b 1 '2 - . ¢ e c

Since the peak enerzy in a capacitor is given by ECV , the capacitance of
T . s

the transducer C° is obtained as

= AP = (9.2)

Now, let us obtain the radiation conductance of the transducars
due to the generation of any particular acoustic mode. Suppose this mede
4 . .. - . . R .
has an electrical potential at the surface ziven by AZ (y,z) where A is
the amplitude of the wave. The total power carried by the mode is

written as [AIZ.PL. We then have from equation (5.23),

da _ Ay Ty 25 v,z ju o iy,z2) (9.3)
4 MZP '
- al®e,

If we assume tha wave grows from zero amplitude to a fiaite amplitude

A over the leazth of the transducer, then A, is obtained by intearating
O =] ) O J = D

(3.3): ..
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AW LT
Ao = QPL (¢ 19 ) (9.4)

where (¢LlpT) is defined analogous to (9.1b)., The radiated acoustic

power, P_, is then written as,
a

2
Pa T lA0l “FL
2.2
- :;gL . <eteTy (9.5)

This is the power coupled to one mode in one direction only. There will,
in general, be some power coupled to the wave in the other direction, as
well as to other modes. The same expression (9.5) will hold with the

appropriate ¢L and PL.

Since the power dissipated in a conductance GL is given by

% GLV2 we may write from (9.5),

2
_ W Ly Ty12
ST Ty [<8"[p™)] (9.6)

Here GL represents the power radiated into one mode in one direction

only. The expression G, may be written in terms of the fractional changes

L
in velocity of the acoustic mode caused by completely shorting the surface
with a conducting layer, Suppose that a charge -A.pL(y,z) per unit area

is induced on the conducting layer by the acoustic wave of amplitude A.

Then we can show frm (5.23) that,

1
{%x - T(Q’L ‘g Jo & (v,2) p (3.2) 9.7)

where BO is the unperturbed wavenumber of the acoustic mode. Now for a
travelling wave ¢L(y,z) depends on z through an exponential phase factor
exp(—jaoz). The charge induced on a uniform conducting sheet also has the

*
same phase factor so that ¢L (y,z)pL(y,z) is independent of z. We can then

PP
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write, g
A L® Loy 2y = L (o]0 !
cdy @ (y,2) p(y,z) =7 V917 (9.8)
’ Ly L 'i
where L is the length of the transducer and (3 |p ) is defined as in f
f
; (9.1b). ;
Using (9.7) and (9.8) the radiation conductance is written as,
¢ w /.—,«LMT\ 2
G=_.Hl.(SL)._L\_i_LL’_J_ (9.9)
7 L 2 v 0 Ly L,
(g l .
K \T |p
|4
‘- We now have the radiation conductance and capacitance of the gzeneralized
g transducer. It will be noted here that if more than one acoustic mode is
. couplad to the transducer then GL is computed similarly for each mode all
* the conductances are placed ig parallel. Assuming only one mode we have
ﬂ}. for Q,
: ‘ T Ly L
' Q- r 200 0ehy (Mg §
. G | - L, T.,2 1
: L l——w ERO N ECRER ;
i: 1
2 RO P SR Pl ,
K = T (9.10)
1\'.-‘. KN {(¢ l >l
v
' where K2 =2 —XQ
[ 1v i
1 and ¥ is number o wavelengths in the transducer = %
: The other terms are redefined here for convenience:
J
(1 2led = [T dydz 37 (y,2) a(y,2)
E over the
transducer
T T . . s
(2) % (y,z) and 37 (y,z) are the potential and charge distributions
produced by the transducer with unit voltage across its terminals.
\ L : . . e - . . .
(3) 27 (y,z) is the potential distribution of a unit amplitude acoustic
mode along a free surface, i‘ §
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-pL(y,z) is the induced charge due to a unit amplitude acoustic
mode when the surface is shorted with a thin conductor. The

minus sign is included in this definition because we may consider

this charge as producing an electrostatic potential that exactly
cancels the acoustic potential ¢L(y,z). Clearly then +pL is re-
lated to ¢L in the same way as pT is related to $I, namely
through the Poisson's equation.

T

In fact ¢T and p~ or ¢L and pL are related through a convolution

product:
p(y,2) = C(y,2) *¢(y,2) (9.11a)
where C(y,z) represents the charge distribution due to a delta function

of potential at y=0, z=0. Clearly the Fourier transforms are related by:
plkysk,) = Tl k) .+ Bl k) (9.11b)

where the bars denote Fourier transforms and ky,kz are the spatial fre-
quencies corresponding to y and z.
. . T L .
Now we can see from equation (9.10) that if ¢ = ¢ , that is,
if the transducer produces a potential distribution that exactly matches
that due to the acoustic mode, then,

2
nKzN

Q=

We can readily show that this is really the minimum possible Q and repre-
sents an optimally coupled transducer so that the factor

Q . Ly T\12
F = ?;“ = Tl<$ lo >1L . (9.12)
(@ |p™) . (&7]p™

may be taken as a measure of the efficiency of the transducer structure.

To see that F < 1 for any ¢T # ¢L we note that the integration of space
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variables over y,z can be replaced by an integration of the Fourier trans-

forms over k¥ , k , so that using (9.1llb),

3 z
_Lr" —T\|2
F=— _1 g* a_f,_ - (9.132)
e ey L (a7l 2
where { ) now denotes incagration over ky’ kz and the bars denoce respec-

tive Fourier transforms. The two terms in the denominator are the norms

. =T =L . . . = . . .
of 37 and ¢ with a weight function C while the numerator is the inner

L

: c = =T ... .. - . = . .

producz of 9 and 3 with a weight function £. Clearly F is maximum when
. 5 . . . . =L _ =T L -

the inner product is maximum, that is, when 27 = 2°. This is, oI course,

what orne would expect intuicively. We note here that F can be written in

terms of charges as wall:

(9.13b)

izure of merit for a transducer excitin
a certain acoustic mode. As an illustration let us evaluate it for a SAW

interdigital transducer with alternating polarities. Since the SAW is ugpi-

form along y, we may neglect the integrations over y (or ky). Also we note

that for fields uniform along vy,
Ck =0, x) =€ lx 9.14)
( v ) Z) ( )

y of the substrata., This is shown

cr

where &€ 1is the effective permittivi
readily from Poisson's equation.

Suppose the transducer potential distribution is periodic with a

Fourier series rapresentation to the form:

. = . s
Tzy = = 30 o-indye (9.15)
n=-= ‘n

(83
N
N

1

is e2qual to the wavenumber of the a2coustic mode being axcited,

)

where

o
=
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ot (z) = ¢°(0) e 3Po? (9.16)

Using (9.14), (9.15) and 9.16) we obtain CT from (9.2), Ga from (9.9)

and F from (9.13a):

T y— —
c =@ coh)
T
@ T 2
=4nEN T nlg | (9.17a)
0 |&v] 4oy 1GHIE DI
G.= 2G, = « {—{ 4nN
a L o2z2]v L= Ly
(¢"fc ¢
. lav] 2.2 =T|2
e wE 4m°N l¢1] (9.17b)
2
laﬁl 91 9.1
F = m = . (9.17¢)
n=0 n
Here the Fourier transform versions of (9.2) and (9.9) for CT and Ga
have been used and the summation from -« to +« has been replaced by

twice the summation from O to +« assuming Eg = EEn' Also Ga has been

multiplied by 2 to account for the bidirectionality. The numerical
value of F was computed using the potential distribution for a SAW IDT
with alternating polarities and with equal electrodes and gaps..

It is evident that while the capacitance arises from all the
Fourier components of the transducer distribution function ¢T, the conduc-
tance comes only from the Fourier component that matches the acoustic
wave being excited. The Q is thus minimized when @T contains only one
Fourier component matching the acoustic wave, that is, when dr= ¢L.

The equations derived in this chapter are applied readily to

line waves as well. However, for any given transducer we have to obtain
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the trausducer distribution function 27 by solving the el

Poisson's equation with the aporopriuite surface boundary
, . . . L . s - -
line wave distribution o is obtained from the field
cussed in.Chapter 3. Fig. 3.4 shows )  for the
in our experiments.
. - - T . . . .

The problem of obtaining 2 for the line wave transducers is a
three dimensional electrostatic field problem and unfortunately this has
not been solved for the single phase or the triangular transducer discussed

in Chapter 3. However, remembering that the optimum transducer is one with

rh

zat a feel for the relative Q's of different tvpes of trans-

©
!

¢

)
®
0
1
sl

ducers.
. P T . " e . .
The transducer distribution 2 should match the line wave dis-
. ; L s . . . .
tribution 9 both along the propagation diraction and in the transverse
direction. Interdigital transducers provide a fairly good match for the

propagation direction as shown by the high F computed for SAW for an

interdigital rransducer. However, it is uniform in the transverse direction

and is not a zood match for the IAW distribution (Figz. 3.4). Tn fact,

the F computad fov LAW for a 1x wide IDT is ~ .15 showing rather poor
efficiency. The sawtooth transducer is similar to the IDT but the funda-
mental Fourier component is weiszhted across the beam and can be matched
to the LAW distribution to provide a hisher F. However, no quantitative
calculation has been carried out.

The single phase transducer is clearly the weakest because it
provides A poor match even in the propagation direction. Since there are
no negative electrodes berween the positive electrodes the potencial is

v

not forced to alternate alonz the propazation path so that the fundamental

Fourier componeat is rather small.

L
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The condition for optimum coupling @T = ¢L suggests that the
transducer in Fig. 9.2 should be fairly efficient. However, it is
difficult to implement because of the cross-overs needed to make con-

nections to the electrodes.




L
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Figure 9.2:

A conceptual LAV transducer for good coupling
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Chapter 10: The Superposition Principle as Applied to Transducer Analysis
and Design

In this chapter we consider an interdigital transducer consisting
of a periodic array of electrodes with a specified voltage sequence (Fig.
10.1). As mentioned in the last chapter, the generation of surface waves
by the transducers is computed in two steps. First, the charge distri-
bution on the electrodes is determined assuming the substrate to be a pure
dielectric. The calculated charge distribution is then used in Eq.

(5.23) to determine the waves generated in either direction. Here we will
describe an application of the superposition principle that simplifies the
first step considerably for periodic SAW interdigital transducers. This
first step of the problem requires us to solve the electrostatic equations
so that the charge is zero in the gaps and the electrical potential has
the specified values on the electrodes. This is a non-trivial problem
especially for arbitrary electrode voltages. Moreover, the problem has

to be solved anew for each new set of voltages.

In this chapter we will show that the charge distribution in a
periodic transducer is written as a convolution product of the electrode
voltages with a basic charge distribution that depends only on the elec-
trode metalization ratio (=a/p), so that it is not necessary to solve
the field equations for each new set of voltages.

Consider the transducer in Fig. 10.2 (a) with 1V applied to the
central electrode and all other electrodes grounded. The charge distri-
bution in this array o(x) (Fig. 10.2 (b)) is the basic charge distribution
mentioned earlier. To show this let us consider the three cases shown in

Fig. 10.3. 1In Fig. 10.3 (a) the charge distribution is clearly Voc(x). In

Fig. 10.3 (b) the charge distribution is Vlc(x-p). Now, in Fig. 10.3 (c) the

foTye
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the charge distribution is obtained by superposing the charge distributions
in Figs. 10.3 (a) and 10.3 (b) giving Voc(x) + Vlc(x-p). This is true be-
cause the field equations are linear and the sum of two solutions is also a
valid solution. The only question is whether it has the correct boundary
values. It is easy to check that it does.

Similarly for an arbitrary sequence of voltages as in Fig. 10.1

we may write the charge distribution Q(x) as,

Qx) = 2V o(x - ap) (10.1a)
= V(x) * g(x) (10.1b)
where v(x) = E Vn §(x - np) (10.1c)

and the * denotes convolution. It will be noted that this argument is
exact only for an infinite array of electrodes with all electrodes occur-
ring periodically. The end effects are easily accounted for by adding a
few grounded electrodes at each end since the effects of neighboring elec-
trodes are negligible beyond the third nearest neighbor. However, if any
electrodes are withdrawn from the array (as is true for a few practical
transducers) then this analysis is not applicable in its present form.

It can be shown from the perturbation equation (5.23) that the
total surface wave amplitude, AS at a frequency w generated by a distri-
buted charge distribution Q(x) proportional to the Fourier transform of
the charge distribution at a spatial harmonic equal to the wavenumber of
the surface wave. Thus,

As(w) ® Q(k = w/vs) (10.2)

where a(k) is the Fourier transform of Q(x)

and vg = surface wave velocity.




From (10.1) we then have,

—_ —/
Ag(®) = V(k = w/v)) . ok = i) (10.3)

v
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where V(k) and E(R) are the Fourier transforms of V(x) and o(x). The
overall response thus splits into the product of an array factor V(k) with
an element factor E(k). The array factor is obtained from a simple Fourier
transformation of the electrode voltages while the element factor is ob-
tained once and for all from field theory. Fig. 10.4 shows the element
factor kl 2 E(k) plotted against k for various values of the metallization
ratio. These plots were obtained from field theory [1S].

This concept has been applied to wvarious types of transducers
and the details are described in [15], [16], and [17]. Presently the
technique is being extended to non-periodic transducers [29]. The
principle is also being incorporated into a general scatter-matrix

characterization of transducers [28].
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